Total No. of Pages: 4

Seat No.

B.C.S. (Part - I) (Semester - II) Examination, April - 2016 MATHEMATICS

Calculus (Paper - IV)

Sub. Code: 59705

Day and Date: Thursday, 07 - 04 - 2016

Total Marks: 50

Time: 12.00 noon to 2.00 p.m.

Instructions: 1) All questions are compulsory.

2) Figures to the right indicate full marks.

Q1) Select correct alternative for each of the following:

[10]

- a) The sequence $\{5^n\}_{n=1}^{\infty}$
 - i) converges to 5

ii) converges to -5

iii) diverges to ∞

- iv) diverges to -∞
- b) The sequence $\left\{ \left(-\frac{3}{4} \right)^n \right\}_{n=1}^{\infty}$ ______.
 - i) is convergent

ii) diverges to ∞

iii) diverges to -∞

- iv) is oscillatory
- c) The series $\sum_{p=1}^{\infty} \frac{1}{n^p}$, diverges if _____
 - i) p > 1

ii) p < 1

iii) $p \le 1$

iv) p = 1

If y =

0

- d) If $\sum_{n=1}^{\infty} a_n$ is series of positive terms and $\lim_{n\to\infty} \sqrt[n]{a_n} = l$, then the series convergent if _
- l>0 ii) l<1
 - iii) l > 1
- iv) l=1
- Every continuous function on a closed interval is _____. e)
 - bounded i)

not bounded ii)

- differentiable
- iv) none of these
- Value of 'c' in conclusion of Rolle's theorem for $f(x) = x^2 (3.5)x$ f) [1, 2] is ____
 - i) 1

iii) 1.5

- iv) 1.75
- $\lim_{x\to 1}\frac{\sin x}{x}=\underline{\hspace{1cm}}$
 - i) 1

iii) -1

- iv) $\frac{1}{e}$
- h) if $y = e^{ax}$ then $y_n =$ ____
 - i)

ii) e^{ax}

iii) $a^n e^{5x}$

iv) $a^n e^x$

s is

6 in

If $y = 2 \sin x \cos x$ then $y_n =$

i)
$$2^n \sin\left(2x + \frac{n\pi}{2}\right)$$
 ii) $2^n \cos\left(2x + \frac{n\pi}{2}\right)$

ii)
$$2^n \cos\left(2x + \frac{n\pi}{2}\right)$$

iii)
$$2^{n-1}\sin\left(2x+\frac{n\pi}{2}\right)$$

iii)
$$2^{n-1}\sin\left(2x+\frac{n\pi}{2}\right)$$
 iv) $2^{n-1}\cos\left(2x+\frac{n\pi}{2}\right)$

The Cauchy's form of remainder after n terms in Maclaurin's theorem is given by _____.

i)
$$R_n = \frac{(b-c)^{n-1}}{(n-1)!} (b-a) f^n(c)$$

ii)
$$R_n = \frac{x^n}{n!} f^n(\theta x)$$

iii)
$$R_n = \frac{h^n (1-\theta)^{n-1}}{(n-1)!} f^n (a+\theta h)$$

iv)
$$R_n = \frac{(b-a)^n}{n!} f^n(c)$$

Q2) Attempt any two of the following:

[20]

- State & prove Cauchy's mean value theorem. a)
- State & prove Leibnitz theorem. b)
- Show that the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ is convergent.

Q3) Attempt any four of the following:

- a) If $y = \cos(m \sin^{-1} x)$ then show that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + m^2)y_n = 0.$
- b) Discuss the convergence of the sequence $\sqrt{5}, \sqrt{5\sqrt{5}}, \sqrt{5\sqrt{5}\sqrt{5}}$
- c) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.
- d) Verify Rolle's theorem for $f(x) = 2x^3 + x^2 4x 2$ in $\left[-\sqrt{2}, \sqrt{2}\right]$
- e) Evaluate $\lim_{x\to 0} \frac{e^x e^{-x} 2\log(1+x)}{x\sin x}$.
- f) Expand $\cos x$ in powers of x.

D-390	D - 667					
[20]	Seat No. of Pages: 3					
discrete	B.C.S. (Part - I) (Semester - I) Examination, March - 2016 MATHEMATICS (Paper - II)					
ifferent	Algebra Sub. Code: 59697					
subject	Day and Date: Tuesday, 29 - 03 - 2016 Time: 12.00 noon to 02.00 p.m. Instructions: 1) All questions are compulsory. 2) Figures to the right indicate full marks. 3) Use of calculator is allowed.					
1' using	Q1) Select correct alternative for each of the following. [10]					
search.	i) If set A has m elements and set B has n elements. Then the power set $P(A \times B)$ has elements.					
ion.	a) mn b) m^n c) n^m d) 2^{mn}					
A (ED)	ii) A relation R is said to be if it is reflexive, anti-symmetric and transitive.					
(6	a) Equivalence relation b) Partial ordering relation					
4	c) Symmetric relation d) Inverse relation					
6 1	iii) Any two equivalence classes are					
	a) disjoint b) identical c) not identical d) either identical or disjoint					
	al and the state of the state o					
	iv) If p is prime, which divides the integer 'a' then g. c. d (p, a) =					
	a) a b) p c) 1 d) 0					
	c) 1 P.T.O.					

Q2) Attem

i)

ii)

iii)

Q3) Attem

i)

ii)

m)

iv)

vi)

v)	There are precisely residue classes modulo 12.						
	a)	4	b) :				
	c)	11 moduletone 1-(1-	d)	12			
vi)		is prime, which does not divide	e the i	nteger 'a' then			
	a)	$a^p \equiv 1 \pmod{a}$	b)	$a^{p-1} \equiv a \pmod{p}$			
	c)	$a^p \equiv 1 \pmod{p}$	d)	$a^{p-1} \equiv 1 \pmod{p}$			
vii)	Eve	ry element in Boolean algebra	have_	The state of the s			
	a)	no complement		ilusinika kata di Karama			
	b)	unique complement					
	c)	two complements					
1	d)	more than two complements					
viii)		be a poset defined by a (3) is	≤b iff	$f(a)b \forall a,b \in D_{30}$ then g.l.b. of 2			
	a)	112 Laybeatler of state Land	b)	3 has an Armshallor Armshall			
	c)	6	d)	1			
ix)	For	the set $S = \{2, 4, 6, 8\}$ under neration, the identity element is	nultip	lication modulo 10 as the binary			
	a)	2	b)	4 Marie Marie Alexander (Rose)			
	c)	6 finish de de -	d)	8			
x)	If	a*(b*c)=(a*b)*c, then *	is	The later of the least of the l			
	a)	commutative	b)	associative			
	c)	distributive	d)	idempotent			

D = 667

BIR

.l.b. of 2

he binary

Q2) Attempt any two of the following.

[20]

- i) If Z be the set of all integers. For any $a,b \in Z$ relation R is defined as aRb iff 11|(5a+6b). Then show that R is an equivalence relation. Find equivalence class of a.
- ii) For any a,b in a Boolean algebra prove that
 - (a) $\overline{a \lor b} = \overline{a} \land \overline{b}$
 - (b) $\overline{a \wedge b} = \overline{a} \vee \overline{b}$
- iii) If a, b, c, d, x, y are integers and $a \equiv b \pmod{n}$, $c \equiv d \pmod{n}$ then prove that
 - (a) $ax + cy \equiv bx + dy \pmod{n}$
 - (b) $ac \equiv bd \pmod{n}$
 - (c) $a+c \equiv b+d \pmod{n}$
- Q3) Attempt any four of the following:

[20]

- i) Define prime integer and composite integer, if p is prime and a, b are integers such that p|ab then prove that p|a or p|b.
- ii) Let R and S be relations defined on set $A = \{1,2,3,4\}$ as, aRb iff a = b + 1 & aSb iff $a \le b$. Find $R \circ S$ and $S \circ R$. Also draw diagraph for $R \circ S$ and $S \circ R$.
- iii) On set N of natural numbers define a relation $a \le b$ iff $a \mid b$. Show that (N, \le) is poset.
- iv) Show that in distributive lattice, if an element has a complement then it is unique.
- v) Define (a) monoid (b) abelian group
- vi) Express following elements of Z_3 as $\overline{0}$, $\overline{1}$, $\overline{2}$
 - a) $\left(\overline{2}\right)^3$

b) 100

c) $\left(\overline{-100}\right)^4$

d) $\overline{10} + \overline{1}$

	Company of the last section
Seat	E 35 KILL 3 C. L. St. 100 L. C.
2000000	
No.	MALINE TEST

B.C.S. (Part - I) (Semester - I) Examination, April - 2016 STATISTICS

Descriptive Statistics - I (Paper - I) Sub. Code: 59700
Day and Date: Friday, 01 - 04 - 2016 Time: 12.00 noon to 2.00 p.m.
Instructions: 1) All questions are compulsory. 2) Figures to right indicate full marks. 3) Use of calculator and statistical table is allowed.
Q1) Choose the correct alternative:
a) Median of the values 20, 25, 23, 30, 37 is
i) 30 ii) 27
iii) 25
b) Quartiles can be located using
i) Frequency polygon ii) Histogram
iii) Ogive curves iv) None of these
c) For open ended classes we can use measure of dispersion.
i) Range ii) M.D.
iii) Q.D.
d) The first ordered central moment is equal to
i) 1
iii) Mean iv) None of these

6		a constant value 50 is added to t is	each	observation of a set
	i)	Increased by 50	ii)	50 times the origin
	iii)	Decreased by 50	iv)	Not affected
f) Gi	ven that $\mu_4 = 24$, $\mu_2 = 3$ then	the di	stribution is
	i)	Leptokurtic	ii)	Platykurtic
	iii)	Mesokurtic	iv)	Symmetric
g)	is unitless measure.		2) Figures to ris
	i)	Range	ii)	Variance
	iii)	Q.D.	iv)	C.V. Demos edite
h)	Ari	ithmatic mean of first 'n' natur	al nui	mber is
	i)	$\frac{n}{2}$	ii)	$\frac{n+1}{2}$
	iii)	$\frac{n-1}{2}$ magazalli (ii	iv)	$\frac{(n+1)(2n+1)}{6}$
i)	For sam	heterogeneous population, a upling method.	samp	le can be drawn usi
	i)	SRSWR	ii)	SRSWOR
	iii)	Stratified	iv)	Systematic
j)	In e	xclusive type of classification	or linearly	limits are exclude
	i)	Upper	ii)	Lower
	iii)	Both	iv)	None of these
. 2				

B.C

D-391

en mean of Q2) Attempt any two of following:

- a) What is meant by measures of central tendency? Define mean, median and mode. Discuss effect of change of origin and scale on mean.
- b) Explain the term skewness. Describe different types of measures of skewness.
- c) Define the different measures of dispersion. State merits and demerits of S.D.

Q3) Attempt any four of following:

[20]

- a) Write a note on simple random sampling.
- b) The first three moments about 1 are 2, 25 and 80 respectively. Find mean, s.d. and β_1 .
- c) Explain procedure for construction of ogive curves.
- d) Discuss effect of change of origin and scale on central moments.
- e) Compute M.D. about mean for following data. 120, 180, 380, 410, 330, 350, 420, 480, 310, 280
- f) For a moderately asymmetric distribution, the values of mean and median are 264 and 276 resp. Estimate value of mode.

13-390

Total No. of Pages: 4

B.C.S. (Part - I) (Semester - I)

Examination, March=2016

MATHEMATICS

Discrete Mathematics (Paper - I)

Sub. Code: 59696

Day and Date: Monday, 28-03-2016

Total Marks: 50

Time: 12.00 noon to 2.00 p.m.

Instructions: 1) All questions are con

2) Figures to the right indicate full marks.

3) Use of calculator is allowed.

O1) Select correct alternative for each of the following:

[10]

- a) The function $f(x) = \frac{1}{x}$ defined on set of non zero real numbers is
 - i) one-one but not onto
 - ii) onto but not one one
 - iii) bijective
 - iv) many one & onto
- b) Recurrence relation corresponding to the sequence 1, 3, 5, 7, ----- is

i)
$$a_n = a_{n-1} + a_{n-2}$$
 $a_0 = 1 \& a_1 = 4$

ii)
$$a_n = a_{n-1} + 2 \ a_0 = 1$$

iii)
$$a_n = 2a_{n-1}$$
 $a_0 = 1$

iv)
$$a_n = 3a_{n-1}$$
 $a_0 = 1$

D-390

Total No. of Pages: 4

Seat No.

B.C.S. (Part - I) (Semester - I) Examination, March- 2016 MATHEMATICS

Discrete Mathematics (Paper - I)

Sub. Code: 59696

Day and Date: Monday, 28-03-2016 Total Marks: 50

Time: 12.00 noon to 2.00 p.m.

Instructions:

- All questions are compulsory. 1)
- Figures to the right indicate full marks. 2)
- Use of calculator is allowed. 3)

Q1) Select correct alternative for each of the following:

[10]

- The function $f(x) = \frac{1}{x}$ defined on set of non zero real numbers is
 - one-one but not onto
 - onto but not one one ii)
 - bijective iii)
 - iv) many one & onto
- Recurrence relation corresponding to the sequence 1, 3, 5, 7, -----is

i)
$$a_n = a_{n-1} + a_{n-2}$$
 $a_0 = 1 & a_1 = 4$

ii)
$$a_n = a_{n-1} + 2$$
 $a_0 = 1$

iii)
$$a_n = 2a_{n-1}$$
 $a_0 = 1$

iv)
$$a_n = 3a_{n-1}$$
 $a_0 = 1$

- c) Number of integers divisible by 3 between 1 to 1000 are 334 ii) 333 i) iv) 331 332 iii) looping is a statement d) for ii) while i) iv) none of these both (i) & (ii) iii) The rule $p \rightarrow q$, $p \vdash q$ is known as _____ e) Conditional Equivalence i) Detachment rule ii) Chain rule iii) Disjunctive Simplification iv) Let p be a statement then 'p \vee (\sim p)' is ____ f) always tautology always contradiction ii) contingency iii)
 - g) Characteristic equation for recurrence relation $a_r 3a_{r-1} + 3a_{r-1}$

i)
$$\alpha^2 - 2\alpha - 3 = 0$$

not a statement

iv)

ii)
$$\alpha^2 - 3\alpha - 2 = 0$$

iii)
$$\alpha^2 - 3\alpha + 2 = 0$$

iv)
$$\alpha^2 + 3\alpha + 2 = 0$$

D

01

a) Test the validity of the argument:

If I work then I cannot study, either I work or I passed discrete mathematics, I passed discrete mathematics therefore I studied.

- b) Given 6 different physics, 5 different chemistry and 8 different mathematics books.
- i) How many ways are there to select one book
 - ii) How many ways are there to select three books, one of each subject
 - Solve the recurrence relation $a_r + 5a_{r-1} + 6a_{r-2} = 42 (4')$
 - d) If n is an integer, then prove that 'if n^2 is odd then n is odd' using method of contrapositive.
 - e) Write an algorithm to search a number from an array using Linear search.
 - f) Prove that $\sqrt{2}$ is an irrational number by method of contradiction.

Seat No.

D: T

B.C.S. (Part-I) (Semester-I) (New) Examination, March-2016 ELECTRONICS (Paper-I)

Flootronics Devices and Circuits-I

			Sub.	Code: 5			minavariT nf	
_	.00 no		nesday, 30-03-20 2.00 p.m. All questions are Figures to right i Neat diagrams m Use of calculator	compulsor ndicate full nust be dray	y. mark			Iarks: 50
I) Sele	ect cor	rect	alternatives for t	the followi	ng (o	ne mark	each):	[10]
a)	A res	sisto	has color code	of Red Re	d Re	d Gold th	en its resista	nce value
	i)	22 K	Ω±5%		ii)	33 KΩ±5	5%	
	iii)	2.2 F	Κ Ω±5%		iv)	3.3 KΩ±	5%	
b)	Ideal	curi	ent source has	cu domisi	inter	nal resist	ance.	
	i)	Low			ii)	High	A.9 (i	
	iii)	Infin	ite in a second		iv)	Zero		
c)	The	Cap	acitor has num	eric code	103	then its	capacitance	value is
	i)	0.1	_· μ <mark>F</mark>	apacient.	ii)	0.01 μF		
	iii)	0.00	1 μF		iv)	1 μF		
d)	The	resis	tance of a wire	is given by	y R =	<u>. 15/07573 . 28</u>	iii) Remou	
	i)	$\rho \frac{L}{A}$			ii)	ρ A		
	iii)	$\rho \frac{A}{L}$			iv)	None of	these	DTO

20

20

=0

50

43

d)

=0

3)

e)	According to maximum power transfer theorem, Maximum power transferred from source to load when								
	i) $Rs = RL$ ii)	Rs > RL							
	iii) Rs < RL iv) None of these							
f)	In Thevenin's theorem, Vth is	NUS .							
	i) Open circuit voltage	My and Dute : Wednes for 15 and 2							
	iii) Open circuit resistance								
	iv) Short circuit current								
g)	is a electronically operate								
	i) Rotary switch	i) Toggle switch							
	III) Kelay	iv) Micro switch							
h)	If 6V battery source applied across $2K\Omega$ and $4K\Omega$ then voltage drop a	series combination of two resistors cross 4KΩ is							
	i) 6 V	ii) 4 V							
	iii) 2 V	iv) None of these							
i)	In P-N junction diode as reverse b	ias increases the width of depletion							
	i) Decreases								
	iii) Remains constant	iv) None of these							
j)	j) For the construction of photo dioc	le material is used.							
	i) Lead sulfide	ii) Indium gallium arsenide							
	iii) Both (i) & (ii)	iv) None of these							

- a) Explain with circuit diagram input and output characteristics of CE configuration.
- b) Write a note on the classification of resistors. Explain construction of carbon composition resistor in detail.
- State Norton's theorem. By using Norton's theorem obtain Norton equivalent circuit.

Attempt Any Four (5 marks each):

[20]

of two resistors

dth of depletion

- Write a note on construction of PN junction diode.
- b) Write a note on 7-Segment display.
- What are different types of switch? Explain in brief.
- d) State and explain Kirchhoff's laws with example.
- e) Write a note on electrolytic capacitor.
- f) Explain transistor as a switch.

l is used.

n arsenide

....

Total No. of Pages :4

Seat No.

B.C.S. (Part -I) (Semester -II) Examination, April - 2016 **MATHEMATICS**

			Graph Sul	Theory() O. Code:			
Day a Time	nd Date :12.00 r	e : Wed	dnesday, 06 - 04 o 2.00 p.m.			Total Marks :	:5
Instru	ctions:	1) 2) 3)	All questions are Figures to the ri Use of calculato	ght indicate r is allowed.	full n	marks.	
Q1) S	elect co	rrect a	llternative for ea				nı
a)						ges as well as no loops is calle	
	i)	Simp	le graph		ii)	Multigraph	
	iii)	Pseuc	lo graph		iv)		
b)	Num	ber of	edges in K _{m,n} is				
		m + n			ii)	m - n	
	iii)	mn			iv)	m + n -1	
c)	Maxi	mum l	height of a binar	y tree with	25 v	vertices is	
	i)	12	had a		ii)	45	
	iii) 2	22			iv)	10	
d)	Numb	er of e	edges incoming			tex in directed graph is called	
	i) In	n-degr	ree of a vertex		ii)	out- degree of a vertex	
	iii) le	ength o	of a vertex		iv)	None of these	

	D 120:	77 71
	D - 138	Q2) Atte
e) Total degree of K ₄ is		a)
i) 6	ii) 12	b)
	1V) 0	0)
The edge connectivity of a connected	graph was 5	c)
SE: SESSION PERSON	ii) 2	
i) 1		
in) I stay of degree one in a binary tr		
	ii) best and the first (ii	
i) forest	iv) affected vertex	Q3) A
h) The expression $a^b + c$ can be written	n in Polish materion as	
i) + ↑abc	ii) at 1 bc	
iii) \(\gamma + abc\)	iv) † a+bc	1.
A vertex whose removal from a gr	raph G results in a disconnected grap	n
is called i) Isolated vertex	ii) Pendant vertex	
- Catavortev	iv) None of these	
j) In-degree of a source in a transpo	ortation network is exactly	
i) 1	ii) 2	
iii) 5	iv) 0	
-2-		

- (2) Attempt any two of the areas
 - a) Define degree of the latest and odd degree vertices in any graph is always at a
 - b) Prove that a grant and only if it is circuit free and has n-1 edges
 - c) Using Ford-Fuller and the maximal flow in graph G given below.

Q3) Attempt any four of the fit and a second

[20]

a) Using Kruskal algorithm and tree for a weighted graph G given below

- b) For a tree T given below find
 - i) Eccentricity of each vertex ii) Radius, diameter

c) Find shortest path from vertex s to vertex a in graph G given below using Dijkstra's algorithm.

d) Show that graph G given below is self - complementary

- e) Draw the arborescence for expression (3x-y) (6a+3) & write it in polish notation.
- f) Define:
 - i) Pendant vertex
 - ii) Isolated vertex

Total No. of Pages: 3

[20] Seat No.

B.C.S. (Part- I) (Semester -I) Examination, April - 2016 COMPUTER SCIENCE

Introduction to Computer and Data Processing-I (Paper-I)

Intro	Sub. Cod	le:59702	
Day and D Time: 12.0	Oate :Sunday, 03- 04- 2016 00 noon to 2.00 p.m.		larks : 50
Instruction	2) Figures to the right indi	ulsory. icate full marks.	
Q1) Sele	ct correct alternative and rewrite		[10
a)	Binary circuit elements have _	stable state.	
	i) One	ii) Two	
	iii) Three	iv) Five	
b)	From the following	memories needs refreshing.	
	i) SRAM	ii) DRAM	
	iii) ROM	iv) All of these	
e)	is not purely outp	out device.	
	i) Screen	ii) Printer	

Speaker

iii)

Plotter

iv)

r.o				D-39	
d)	N. W.	is not a computer classif	ficati	on.	j) The te
	i)	Mainframe	ii)	Maxframe	i)
	iii)	Mini	iv)	Micro	iii)
e)		passes into and out from t	he co	omputer via its ports.	
i zahii	i)	Data			2) Attempt
	iii)	Graphics	iv)	Pictures	a) Exp
f)	In an	n Assembly language the comp nglish words instead of binary	uter mac	instructions written with the use	b) Wr Gir
	i)	ASCII codes	ii)	Symbolic code	c) W
	iii)	Gray codes	iv)	Opcode	
g)	On	aspect the analog	g co	mputers are better than digital	Q3) Анетр
	i)	Speed	ii)	Accuracy	a) I
	iii)	Reliability	iv)	Automatic	6) 1
h)	The	e Magnetic tape can serve as		media.	c)
	i)	Secondary storage	ii)	Output	0
	iii)	Input	iv) Processing	0)
i)	EBO	CDIC computer codes can code	e up t	different characters	
	i)	256	ii)	128	
	iii)	32	iv) 64	

Explain Gray code and Excess 3- code.

e)

f)

Explain MICR.

characters.

D-394

Total No. of Pages: 3

Seat No.

22) Attempt

B.C.S. (Part - I) (Semester - I) Examination, April - 2016 **COMPUTER SCIENCE**

Introduction to Programming Using 'C'-I (Paper-II) Sub. Code: 59703

Sub Code:59703	
Sub. Code: 59703	Total Marks: 50
Day and Date: Monday 04 - 04 - 2016	
Time: 12.00 noon to 2.00 p.m.	
Time: 12.00 floor to 2.5 T	
All questions are compulsory. All questions are compulsory.	
2) Figures to the right march	Ladrenory (1
this years into kenterther method of the operations	14.01
to a drowerite entire statement.	[10]
Q1) Select correct alternative and rewrite entire statement.	
a) The statement putchar(h) function always outp	uts character h to
a) The statement putchar(h) function atways	
the	
The second of th	n the compiler
i) screen	
The state of the s	nutnut
iii) depends on the standard iv) standard of	Julpur
m) depends of	
b) From the following is odd function.	
b) From the following	
ii) fprintf	
iv) scanf	
iii) putchar	nado (I
loop is most suitable to first perform t	the operation and then
loop is most suitable to first per-	
test the condition.	
While while	
For	
the same that the same of	f these
iv) None of	I mrozo
m) Do was	

WILE.	CT .				
d)	From the	e following	is an invali	d if else statem	D-
àŧ		if(a=1)){}			
= =	m) II (a			if ((char) a){}	
e)	-	_ data type will t	hrow an error	r on modulus o	peration (%).
	i) Cha	ur	ii)	DHOIL	
	iii) Int		iv)	Float	
f)	From the	following	is not an	arithmetic oper	ration.
	i) a*=	10;	ii)	a /= 10;	
	iii) a!=	10;	iv)	a %= 10;	
g)	What is s	hort int in C progr	ramming?		
	i) Basi	c data type of C			ie (i
	ii) Qual	ifier			
	iii) Shor	t is the qualifier a	nd int is the b	pasic data type	
	iv) All o	of these			
h)	The form	at identifier '%i'	is also used		data type.
	i) char			int	
	iii) float	first perform the		double	
i)		_ is not a valid va	riable name o	leclaration in '(C' language.
	i) int_a	3;	ii)	int a 3;	

iv) int_3a

iii)

int 3_a;

Write syntax and explain if, if else, nested if statement with example. What is variable? Explain various data types used in 'C'. MENDEN STORY any two of the following. [07] peration (%). d.tuqtuobiz (vi h.tuobte (iii d.dilbte (i header file C language, The function printil () belongs to

any four of the following.

What is an array? Explain multidimensional array with example.

[07]

Explain stremp() and strrev() function with example.

Explain any two unconditional breaking control statements.

Write syntax and explain for loop with example.

How to use printf() and scanf() functions?

Write a 'C' program to find sum of digits of given number.

What are the characteristics of an algorithm?

ngge

type.

1) Solcotom:

"HOIT

-E-

D-392

Total No. of Pages: 4

Seat No.

NE.

a

B.C.S. (Part - I) (Semester - I) Examination, April - 2016 STATISTICS (Paper - II)

Probability and Discrete Probability Distributions

			Sub.	Code: 597	01		
		Saturday,	, 2 - 04 - 2016 0 p.m.	einel (comp		Total Ma	arks: 50
Instructions:		 All questions are compulsory. Figures to right indicate full marks. Use of calculator and statistical table is allowed. 					0.
Q1) Cho	ose t	he correct	alternative.				[10]
a)	If A	and B are	two events, t	hen probabil	ity of occurrer	nce of eith	er A or B
	i)	P(A)+P(B)	B)	ii)	$P(A \cup B)$		
	iii)	P(A∩B)		iv)	P(A).P(B)		
b)	If A	X		ween P(A) a	nd P(B) is	C I A	
	i)	$P(A) \neq P$	(B)	ii)	P(A)=P(B)		
	iii)	P(A)>P(B)	iv)	P(A) <p(b)< td=""><td></td><td></td></p(b)<>		
iii) b) If i) iii)		P(A)=0.3, P	P(B)=0.4 and	A and B are n	nutually exclu	sive then I	P(Ac/Bc)=
	i)	0.3	- R(X S =), 10	ii)	0.4		
	iii)	0.12		iv)	0.5		

				D			
d)	In an experiment of tossing of 3 coins simultaneously, Probab getting at most one tail is						
	i)	1/2 1/1 - 1/2 (1-1)	ii)	1/8			
	iii)	3/8	iv)	7/8			
e)				h P(A)=0.3, P(B)=0.5 and			
	i)	0.5	ii)	0			
	iii)	0.7	iv)	Contident Saturdon E.O.			
f)		10					
	ther	mean of X is					
	i)	-1	ii)	Poose the correct ellerna			
	iii)	1	iv)	0.5 The Att was			
g)	For	Binomial distribution					
	i)	Mean=Variance	ii)	Mean>Variance			
	iii)	Mean <variance< td=""><td>iv)</td><td>None of these</td></variance<>	iv)	None of these			
getting at most one tail is i) 1/2 ii) iii) 3/8 iv) e) If A and B are independent events with A)=k, then value of k is i) 0.5 ii) iii) 0.7 iv) f) Let the p.m.f. of X be P(x) = \frac{3-x}{10}; x=-1,0 \text{ then mean of X is} i) -1 ii) iii) 1 iv) g) For Binomial distribution i) Mean=Variance ii) iii) Mean <variance 1="" 52="" a="" card="" drawn="" from="" given="" h)="" ii)="" ii)<="" is="" it="" iv)="" king="" of="" pack="" playing="" red="" td="" that="" the=""><td>ing cards, the probability it</td></variance>	ing cards, the probability it						
N ACC	i)	1/52		2/26			
	iii)	1/2		13/52			
i)			ndom	experiment.			
	i)	Rolling of coin	ii)	Tossing of coin			
	iii)	Throwing of ball in sky	iv)	Detection of blood group			

 $X \rightarrow X+Y$

Attempt

i)

ii)

ii) $P(X \le 4), P(2 \le X \le 6)$.

iii) $P(X=5/X \ge 3), P(X \ge 6/X \ge 4).$

-3-

Find i)

d group

Q3) Attempt any four of following:

- a) Let $X \rightarrow B(8, 1/4)$. Find
 - i) P(X=3)
 - ii) P(X<3)
 - iii) $P(X \le 6)$.
- b) Show that: i) $P(\phi) = 0$

ii)
$$P(A')=1-P(A)$$
.

c) Let X is a discrete r.v. with pmf

$$P(X) = \frac{x}{15}$$
; $x = 1, 2, 3, 4, 5$
= 0 otherwise

Find E (X) and var (X)

- d) If P(A)=0.5, P(B)=0.6, P(B/A)=0.9. Find the probability that
 - i) A and B both happens
 - ii) Atleast one of A and B happens
 - iii) A happens given B has happened.
- e) Define expectation. Prove that $Var(X) = E(X^2)-[E(X)]^2$.
- f) Define the terms:
 - i) Sample space
 - ii) Event
 - iii) Compliment of event
 - iv) Null event

CSEC CONTROL C

Seat No.

B.C.S. (Part - I) (Semester - II)

Conti	structions: 1) All questions are compulsory. 2) Figures to the right indicate full marks. 3) Use of calculator and statistical table is allowed. 1) Choose the correct alternative. [10] a) Probability of rejecting Ho when it is true is equal to i) Level of significance ii) Probability of Type 1 error iii) Power of test iv) Both (i) and (ii) b) If X and Y are independent N(10, 9) and N(15, 16) then X+Y				
	Day and Date : Tuesday, 12 - 04 - 2016 Time : 12.00 noon. to 2.00 p.m.				Total Marks: 50
Instructions	2)	Figures to the right	indicate full m		
Q1) Choo	se the co	rrect alternative.		7	[10]
a) 1	Probabili	ty of rejecting Ho	when it is tru	ue is equal to_	
	_				
	If X and	d Y are independ	lent N(10,	9) and N(15,	16) then X+Y
	i) N(2 iii) N(5			N(12.5, 337) N(0, 1)	
c) 1	If Y→	Chi square distri	bution with	n 16 d.f. ther	n P(Y≤20.465)is
	i) 0.7 iii) 0.8		ii) iv)	0.3 None of these	

d)	If X follows exponential distribution then						
	·	ii) Mean=S.D.					
	iii) Mean>Variance	iv) Mean=Mode					
e)	If F(X) is a distribution funct	ion and $x_2 > x_1$ then					
	i) $F(x_2) < F(x_1)$	ii) $F(x_2) \le F(x_1)$					
	iii) $F(X_2) \ge F(x_1)$	iv) $F(X_2) > F(x_1)$					
f)	If $X \to t_n$ then X^2 has	distribution.					
	i) t	ii) Chi square					
	iii) F	iv) None of these					
g)	For testing goodness of fit_	test is used.					
	i) Normal	ii) t					
	ii) F	iv) Chi square					
h)	$X \rightarrow \bigcup (a, b)$ then mean of distribution is						
	i) $\frac{b-a}{2}$	ii) $\frac{b+a}{2}$					
	iii) $\frac{a-b}{2}$	iv) $\frac{ab}{2}$					
i)	Testing $H_0: \mu = 0$ against H_1	$\mu>0$ is atest.					
1,0	i) Two tailed	ii) One sided left tailed					
	iii) One sided right tailed	iv) None of these					
j)	If $X \rightarrow N(-80, 81)$ then standard normal variate is						
	i) $\frac{X+80}{9}$	ii) $\frac{X-80}{9}$					
	iii) $\frac{X-80}{91}$	iv) $\frac{X+80}{81}$					

ratiance of continuous random variable e) Define Normal distribution. State its mean, variance state Binomial and Phisson approximation to normal

Q2) Attempt any two of following:

[20]

- a) Define hypothesis. Discuss the procedures to test
 - i) $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$
 - ii) $H_0: P=P_0$ against $H_1: P\neq P_0$ For large sample tests.
- b) Explain the terms:
 - i) Continuous random variable
 - ii) Probability density function
 - iii) Distribution function
 - iv) Mean
 - v) Variance of continuous random variable
- c) Define Normal distribution. State its mean, variance, additive property. State Binomial and Poisson approximation to normal.

Q3) Attempt any four of following:

[20]

- a) State properties of distribution function of continuous r.v.
- b) A die was thrown 90 times and number of faces shown are as indicated below:

Faces	1	2	3	4	5	6
Frequencies	18	14	13	15	14	16

Test whether the die is "fair".